• design
  • about
  • contact
  • cv

brad baxley

  • design
  • about
  • contact
  • cv

Nature

27 February 2014, Vol. 506 No. 7489 pp407-522

Quantum droplets of electrons and holes

A. E. Almand-Hunter, H. Li, S. T. Cundiff, M. Mootz, M. Kira & S. W. Koch

Abstract

Interacting many-body systems are characterized by stable configurations of objects—ranging from elementary particles to cosmological formations1,2,3—that also act as building blocks for more complicated structures. It is often possible to incorporate interactions in theoretical treatments of crystalline solids by introducing suitable quasiparticles that have an effective mass, spin or charge4,5 which in turn affects the material’s conductivity, optical response or phase transitions2,6,7. Additional quasiparticle interactions may also create strongly correlated configurations yielding new macroscopic phenomena, such as the emergence of a Mott insulator8, superconductivity or the pseudogap phase of high-temperature superconductors9,10,11. In semiconductors, a conduction-band electron attracts a valence-band hole (electronic vacancy) to create a bound pair, known as an exciton12,13, which is yet another quasiparticle. Two excitons may also bind together to give molecules, often referred to as biexcitons14, and even polyexcitons may exist15,16. In indirect-gap semiconductors such as germanium or silicon, a thermodynamic phase transition may produce electron–hole droplets whose diameter can approach the micrometre range17,18. In direct-gap semiconductors such as gallium arsenide, the exciton lifetime is too short for such a thermodynamic process. Instead, different quasiparticle configurations are stabilized dominantly by many-body interactions, not by thermalization. The resulting non-equilibrium quantum kinetics is so complicated that stable aggregates containing three or more Coulomb-correlated electron–hole pairs remain mostly unexplored. Here we study such complex aggregates and identify a new stable configuration of charged particles that we call a quantum droplet. This configuration exists in a plasma and exhibits quantization owing to its small size. It is charge neutral and contains a small number of particles with a pair-correlation function that is characteristic of a liquid. We present experimental and theoretical evidence for the existence of quantum droplets in an electron–hole plasma created in a gallium arsenide quantum well by ultrashort optical pulses.

Quantum Dropletons in the Press

Cundiff Group Site Graphics, UMich

Physical Review Letters, Murnane-Kapteyn Group, JILA

Nature vol. 482, Ye Group, JILA

Langmuir

13 June 2017, Vol. 33 No. 23

JILA Light & Matter, vol.10 no.1

Nature Materials

September 2015, Vol. 14 No. 9 pp849-960

Annual Review of Biophysics, 2014, Perkins Group, JILA

Perkins Group Site Graphics, JILA NIST/CU

Drupal web design by Kristin Conrad, JILA

Science vol. 336, Murnane-Kapteyn Group, JILA

Advanced Functional Materials

23 October 2012, Vol. 22 No. 20

Journal of Physical Chemical Letters, 2014, 5, Ye Group, JILA

Nano Letters, Murnane-Kapteyn Group, JILA

Lab on a Chip

21 January 2012, Vol. 12 No. 2

ACS Synthetic Biology

November 2015, Vol. 4 No. 11

Nature Photonics

December 2010, Vol. 4 No. 12

Nature vol. 492, Ye Group, JILA

Angevandte Chemie

2012, Vol. 51 No. 8

PNAS, Murnane-Kapteyn Group, JILA

JACS

16 March 2011, Vol. 133 No. 10

ACS Nano vol. 5, Perkins Group, JILA

Nature

— view —

Quantum Dropletons in the Press

— view —

Cundiff Group Site Graphics, UMich

— view —

Physical Review Letters, Murnane-Kapteyn Group, JILA

— view —

Nature vol. 482, Ye Group, JILA

— view —

Langmuir

— view —

JILA Light & Matter, vol.10 no.1

— view —

Nature Materials

— view —

Annual Review of Biophysics, 2014, Perkins Group, JILA

— view —

Perkins Group Site Graphics, JILA NIST/CU

— view —

Science vol. 336, Murnane-Kapteyn Group, JILA

— view —

Advanced Functional Materials

— view —

Journal of Physical Chemical Letters, 2014, 5, Ye Group, JILA

— view —

Nano Letters, Murnane-Kapteyn Group, JILA

— view —

Lab on a Chip

— view —

ACS Synthetic Biology

— view —

Nature Photonics

— view —

Nature vol. 492, Ye Group, JILA

— view —

Angevandte Chemie

— view —

PNAS, Murnane-Kapteyn Group, JILA

— view —

JACS

— view —

ACS Nano vol. 5, Perkins Group, JILA

— view —

Powered by Squarespace.